

Journal of Organometallic Chemistry 489 (1995) C1-C3

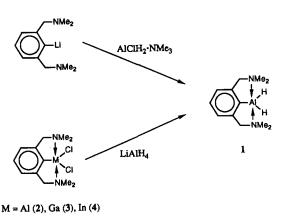
Preliminary communication

An intramolecularly base-stabilized monomeric organoaluminum dihydride

Leopoldo Contreras ^a, Alan H. Cowley ^{a,*}, François P. Gabbaï ^a, Richard A. Jones ^{a,*}, Carl J. Carrano ^b, Marcus R. Bond ^b

> ^a Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, TX 78712, USA ^b Department of Chemistry, Southwest Texas State University, San Marcos, TX 78666, USA

> > Received 2 March 1994; in revised form 19 July 1994


Abstract

The intramolecularly base-stabilized arylaluminum dihydride $[2,6-(Me_2NCH_2)_2C_6H_3]AlH_2$ (1) has been prepared by the metathesis reaction of the corresponding lithium aryl with $AlH_2Cl \cdot NMe_3$. Alternative methods for the synthesis of 1 are transmetalation or reduction reactions of $[2,6-(Me_2NCH_2)_2C_6H_3]MCl_2$ (M = Al (2), Ga (3), In (4)) with LiAlH₄. The X-ray crystal structures of 1 and 2 have been determined: 1, orthorhombic, *Pbca*, with a = 17.179(3), b = 9.014(20, c = 12.707(3) Å, V = 2794(1) Å³ and Z = 8; 2, monoclinic, C2/c, with a = 8.2880(10), b = 17.022(2), c = 14.381(3) Å, $\beta = 99.46(1)^\circ$, V = 2001.2(5) Å³, and Z = 4. Compounds 1 and 2 are monomeric in the solid state.

Keywords: Aluminium; Hydrides; X-ray structure

Aluminum hydride moieties have been detected on surfaces during thin film growth from organoaluminum sources [1]. Monomeric organoaluminum hydrides could, in principle, serve as useful models for further understanding of the reaction chemistry of surfacebound AlH_n groups. However, it is known that basefree organoaluminum hydrides show a strong tendency to oligomerize even when the organo substituents are relatively bulky [2]. We report the synthesis and X-ray crystal structure of an intramolecularly base-stabilized arylaluminum dihydride featuring a terminal AlH₂ group. Previous structural assays are confined to cationic species of the type $[H_2AIL]^+$ where L represents a multidentate ligand [3].

A solution of $H_2AlCl \cdot NMe_3$ (400 mg, 3.3 mmol) in 50 ml of Et_2O was treated with a solution of $Li[2,6-(Me_2NCH_2)_2C_6H_3]$ (3.3 mmol) [4] in 30 ml of Et_2O at $-78^{\circ}C$. The reaction mixture was allowed to warm to 25°C, following which it was stirred for an additional 3 h at this temperature. After filtration, removal of the solvent under reduced pressure left a white residue,

Form. 1.

which was recrystallized from toluene at -40° C to afford colorless crystals of $[2,6-(Me_2NCH_2)_2C_6H_3]$ -AlH₂ (1), m.p. 87–88°C, in 55% yield. Elemental analysis for C₁₂H₂₁AlN₂: calculated C 65.43%, H 9.61%, N 12.72%; found C 63.90%, H 9.49%, N 12.60%. The presence of a hydride resonance of relative area 2 in the ¹H NMR spectrum [5] and the equivalence of the NMe₂ methyl resonances in the ¹H and ¹³C{¹H} NMR spectra were suggestive of a monomeric formulation

^{*} Corresponding authors.

⁰⁰²²⁻³²⁸X/95/\$09.50 \otimes 1995 Elsevier Science S.A. All rights reserved SSDI 0022-328X(94)05132-1

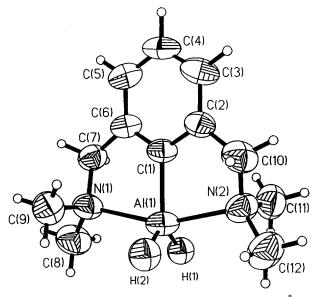


Fig. 1. View of the structure of 1. Important bond lengths (Å) and angles (deg): Al(1)-C(1) 1.949(5), Al(1)-N(1) 2.277(5), Al(1)-N(2) 2.233(5), Al(1)-H(1) 1.512(38), Al(1)-H(2) 1.488(42), N(1)-Al(1)-N(2) 157.8(2), H(1)-Al(1)-H(2) 118.8(21), H(1)-Al(1)-C(1) 1.228(15), H(2)-Al(1)-C(1) 118.4(15).

for 1. Further support for such a structure assignment stemmed from the following observations: (i) the highest m/z peak in the EI mass spectrum occurred at 220 amu, and (ii) the presence of overlapping bands at 1767 and 1774 cm⁻¹ in the IR spectrum which can be assigned to asymmetric and symmetric terminal Al-H stretching vibrations respectively. An X-ray analysis was considered desirable to establish the connectivity of the "arms" of the ligand, for example.

Crystal data: $C_{12}H_{21}AIN_2$, M = 220.3, orthorhombic, space group *Pbca*, a = 17.179(3), b = 9.014(2), c =18.042(4) Å, V = 2794(1) Å³, $D_c = 1.047$ g cm⁻³, Z = 8, λ (Mo-K α) = 1.71073 Å, μ (Mo-K α) = 1.20 cm⁻¹. 1838 independent reflections were collected on a Siemens R3m/V diffractometer at 298 K with 2θ between 3.5 and 45.0° using the θ -2 θ scan mode. The data were corrected for absorption (semiempirical) and Lorentzpolarization effects. The structure was solved by direct methods and refined (full-matrix least-squares) using 1238 reflections with $I > 4.0\sigma(I)$. The final R and R_{w} values were 7.27 and 8.68% respectively. The X-ray analysis reveals that 1 is monomeric (Fig. 1) and that there are no unusually short intermolecular contacts. Both CH₂NMe₂ "arms" of the aryl ligand are coordinated; however, the $N \rightarrow Al$ dative bond lengths (av. 2.255(5) Å) are somewhat longer than those in other amine-alane adducts, e.g. 2.063(8) Å in Me₃NAlH₃ (gas phase) [6]. Both hydrides were located in the final difference map and the average Al-H bond length (1.50(4) Å) is similar to those reported for terminal Al-H bonds [7]. The overall geometry at the pentacoordinate aluminum center is trigonal bipyramidal.

However, while the H₂AlC moiety is planar within experimental error (sum of angles at Al = $360.0(21)^\circ$), the axial ligands are distinctly non-linear (N(1)-Al(1)-N(2) = $157.8(2)^\circ$) owing to the constraints of the ligand system.

The new dichloride $[2,6-(Me_2NCH_2)_2C_6H_3]AlCl_2$ (2) was synthesized via the reaction of Li[2,6- $(Me_2NCH_2)_2C_2H_3$] with an equimolar quantity of aluminum chloride using a very similar procedure to that described above for 1. Characterization of colorless, crystalline 2 [m.p. 70°C (dec)] is based on ¹H and ¹³C{¹H} NMR spectroscopy, mass spectroscopy [5], and X-ray analysis. Compound 2 crystallizes with one molecule of benzene per formula unit.

Crystal data: $C_{12}H_{19}AlCl_2N_2 \cdot C_6H_6$, M = 367.3, monoclinic, space group C2/c, a = 8.2880(10), b =17.022(2), c = 14.381(3) Å, $\beta = 99.46(1)^\circ$, V = 2001.2(5)Å³, $D_c = 1.219$ g cm⁻³, Z = 4, λ (Mo-K_{α}) = 0.71073 Å, μ (Mo-K_{α}) = 3.69 cm⁻¹. 1608 independent reflections were collected on a Siemens R3m/V diffractometer at 298 K with 2θ between 3.5 and 45.0° using the θ -2 θ scan mode. The data were corrected for absorption (semi-empirical) and Lorentz-polarization effects. The structure was solved by Patterson methods and refined (full-matrix least-squares) using 701 reflections with $I > 4.0\sigma$ (I). The final R and R_w values were 5.23 and 5.58% respectively. The monomeric structure of 2 is very similar to that described above for 1 with the following metrical parameters for the pentacoordinate $CAI(CI)_2N_2$ moiety: AI-C = 1.911(7), AI-CI = 2.150(2), AI-N = 2.261(5) Å, and $N-AI-N = 158.8(3)^{\circ}$.

Treatment of 2 with an excess of LiAlH₄ in Et₂O solution at 25°C affords, after workup and recrystallization from toluene, a virtually quantitative yield of 1. Interestingly, Ar'GaCl₂ [8] and Ar'InCl₂ [9] undergo facile transmetalation reactions since treatment of these dichlorides with LiAlH₄ in Et₂O solution at 25°C also results in high yields of 1.

Supplementary material is available from the Cambridge Crystallographic Data Center.

Acknowledgments

We are grateful to the National Science Foundation and the Robert A. Welch Foundation for generous financial support.

References

- B.E. Bent, R.G. Nuzzo and L.H. DuBois, J. Am. Chem. Soc., 111 (1989) 1634.
- [2] O.T. Beachley, Jr. and L. Victoriano, *Organometallics*, 7 (1988) 63.

- [3] J.L. Atwood, K.D. Robinson, C. Jones and C.L. Raston, J. Chem. Soc., Chem. Commun., (1991) 1697.
- [4] G. van Koten, Pure Appl. Chem., 61 (1989) 1681.
- [5] ¹H NMR (300.15 MHz, 298 K, C_6D_6): 1, $\delta = 2.22$ (s, 12H, NMe₂), 3.29 (s, 4H, CH₂), 4.28 (s, br, 2H, AlH₂), 6.91 (d, 2H, 3,5 H-ring, J = 7.2 Hz), 7.27 (t, 1H, 4 H-ring, J = 7.2 Hz); 2, $\delta = 2.21$ (s, 12 H, NMe₂), 3.15 (s, 4H, CH₂), 6.79 (d, 2H, 3,5 H-ring, J = 7.2 Hz), 7.20 (t, 1H, 4 H-ring, J = 7.2 Hz). ¹³C{¹H} NMR (75.67 MHz, 298 K, C_6D_6): 1, δ 46.9 (NMe₂), 66.5 (CH₂), 122.4 (3,5 C-ring), 129.3 (4 C-ring), 145.8 (2,6-C-ring). The *ipso* carbon was not detected; 2, δ 47.1 (NMe₂), 65.6 (CH₂), 123.2 (3,5 C-ring), 129.9 (4 C-ring), 145.3 (2,6 C-ring). The *ipso* carbon was

not detected. MS(CI, CH₄): 1: m/z 219 (M⁺-H, 100%), 193 (M⁺-AlH₂+2H, 13%), 175 (M⁺-NMe₂, 3%); 2: m/z 289 (M⁺ + H, 18%), 253 (M⁺-Cl, 100%).

- [6] A. Almenningen, G. Gundersen, T. Haugen and A. Haaland, Acta Chem. Scand., 26 (1972) 3928.
- [7] J.L. Atwood, F.R. Bennett, F.M. Elms, C. Jones, C.L. Raston and K.D. Robinson, J. Am. Chem. Soc., 113 (1991) 8183.
- [8] A.H. Cowley, R.A. Jones, M.A. Mardones, J. Ruiz, J.L. Atwood and S.G. Bott, Angew. Chem., Int. Ed. Engl., 29 (1990) 1150.
- [9] H. Schumann, W. Wasserman and W. Dietrich, J. Organomet. Chem., 365 (1989) 11.